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◼ Evaluation results show that P1+P2 achieves mAP 55.6% at 10-shot, outperforming the baseline by 25.7%
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mAP Prec. Rec. mAP Prec. Rec. mAP Prec. Rec. mAP Prec. Rec.

Baseline 9.1 10.5 24.5 19.2 18.2 41.5 23.4 22.2 48.1 29.9 34.7 54.6

P1 18.7 12.5 27.4 33.2 22.9 48.9 39.1 27.3 54.9 45.1 38.4 59.8

P1+P2 26.2 14.6 22.8 41.8 27.5 52.7 49.6 35.3 60.2 55.6 41.5 62.1
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𝑠𝑐𝑜𝑟𝑒 = 𝑠 ∗ Ԧ𝑣 ∗ Ԧ𝑡𝑇

𝑠: Learnable parameter
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